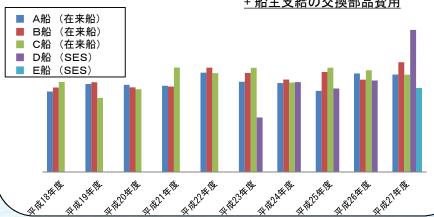


離島航路に就航するSES旅客船の新規需要喚起 に係るフィジビリティスタディ(FS)


- ▶ ヒアリングにより、離島航路に就航するSES旅客船のメンテナンスコストを含むトータルコスト及び船員の業務環境を把握する
 - ・ 調査対象 : 離島航路に就航するSES (二重反転ポッド式)
 - ヒアリング先 : 内航海運事業者、修繕ヤード、機器メーカー
 - ヒアリング内容 : 整備・検査費用、業務環境 等
- ▶ 二次電池等についてヒアリング等調査を行い、SESへの将来的な適用可能性について検討する

<結果>

各船の整備・検査費用

➤ 在来旅客船及びSES旅客船について、各船の整備・検査項目及び費用 について分析を行った

○整備・検査費用 = 修繕ヤードの作業費 + 修繕ヤード手配の交換部品費 + 船主支給の交換部品費用

年間燃料費コストの差(ヒアリングにより推算)

燃料消費量の差 : (SES-在来船)/ 在来船 ⇒ △18%

SES・在来旅客船の船員業務負担に係るヒアリング

➤ SESのメリット、デメリットに関し船員及び運航管理者から以下の通り聴取した

Oメリット

- ✓ 操船性:特に強風下においてはポッド推進器による進路保持性 能が優れている
- ✓ 静粛性:特に離着岸時においても振動・騒音が小さく、船が動いているのを感じないこともある。また、乗客からの声も同様である。

〇デメリット

✓ 検査・整備費用:特に就航後最初の定期検査(第2回定期検査) からは、検査・整備費用が増大する

二次電池(リチウムイオン)等の将来的な適用可能性の検討

○試算条件

- ・1,000トンクラスのカーフェリーを想定
- •15分航海⇒15分停泊の往復を14回/日×365日/年
- ・両港に充電ステーションを整備し、着岸ごとに充電

	発電機 : 電池
初期コスト	1 : 0.52 + 盤のコスト
メンテナンスコスト(10年)	1 : 3.2
燃料・電力費(12ヶ月)	1 : 2.8

二次電池の適用に関しては、さらなるシステムの検討とコストダウンが必要