令和7年度 内航船技術支援セミナー

信頼性の高い 主機関システムの開発と バイオ燃料への挑戦

> 2025年11月7日 株式会社赤阪鐵工所

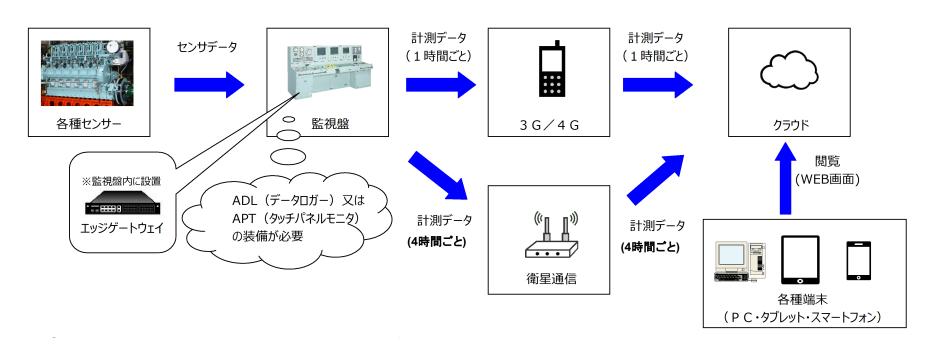
目次

信頼性の高い主機関システム

1.AE-Dr.

2.セルフバックアップエンジン

バイオ燃料

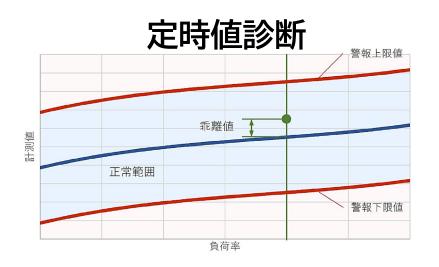

3.バイオ燃料製造

AE-Dr. (Akasaka Engine Doctor)

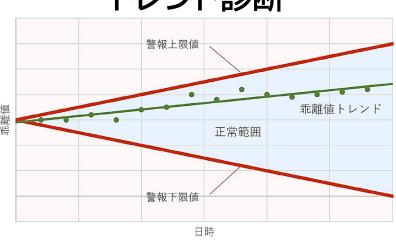
エンジンデータの船陸間共有システム

ランニング費用を抑えたシステム

3種類のバージョンにより、必要に即した支援が可能


AE-Dr.-Light

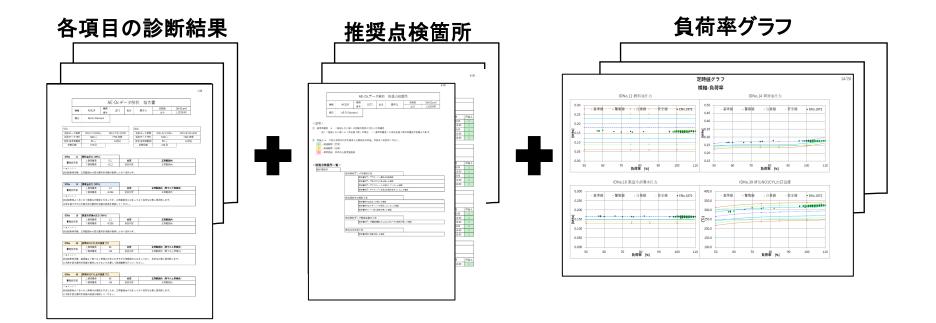
- ★クラウドサーバへのデータ転送
- ★データ閲覧 (一覧表・グラフ)



AE-Dr.-Standard

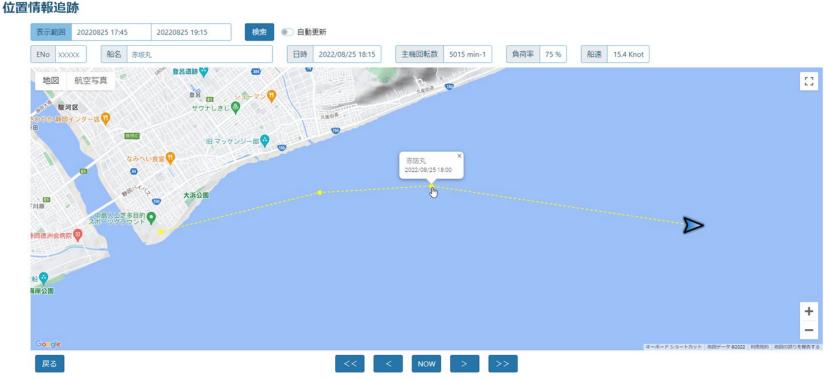
- ★クラウドサーバでの診断
- ★点検箇所推定

トレンド診断



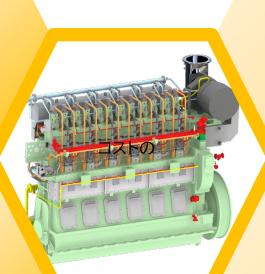
特許取得の診断手法により診断。異常時にはメール通知

AE-Dr.-Premium


- ★高度船舶安全管理システム準拠
- ★毎月のレポート

- ・高度なセンサ装備
- ・船内にて瞬時診断

位置情報追跡画面

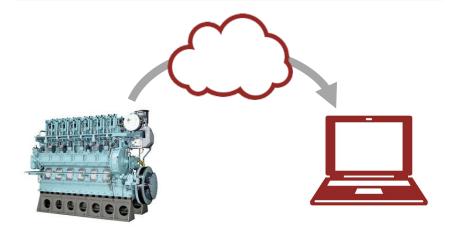

本船に設置したGPS機器から位置情報を取得しWEB画面に表示します本船の位置とエンジンデータをリンクして確認出来ます

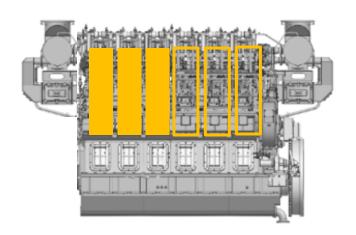
自動運航船に求められる主機関

既存船と 同等以上の 高信頼性

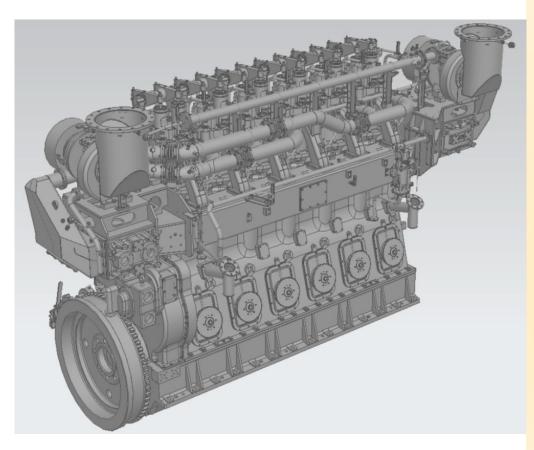
冗長性と コストの バランス

搭載性 に優れた システム


優れた 熱効率


高度監視システム

高い信頼性を有する 低速4ストロークディーゼルエンジンに 高度な監視システムを搭載し 状態診断と自動制御を行うことで 安定、安全な運航を確保します


3シリンダ運転機能 (ハーフカット)

万一の故障時は 過給機やガバナなどの主要機器類を 二系統に分けることで、異常発生時に 3シリンダのみでの運航継続を 可能とします

セルフバックアップエンジンの構造

6シリンダ機関をベース 過給機・空気冷却器 ガバナなど

機器を船首側と船尾側にそれぞれ配置する

燃料系・潤滑油系

制御系・吸排気系

始動空気系

各系統を前後で分割

信頼性

燃料系や吸排気系、制御系などを二系統もち、 故障時にも片側による継続運転が可能

コスト

<mark>冗長性とのバランスにより、コストを許容可能なレベルに設定</mark>

搭載性

実績のあるエンジンと、ほぼ同等の据付寸法 2重化機器も他システムに比べて限定的

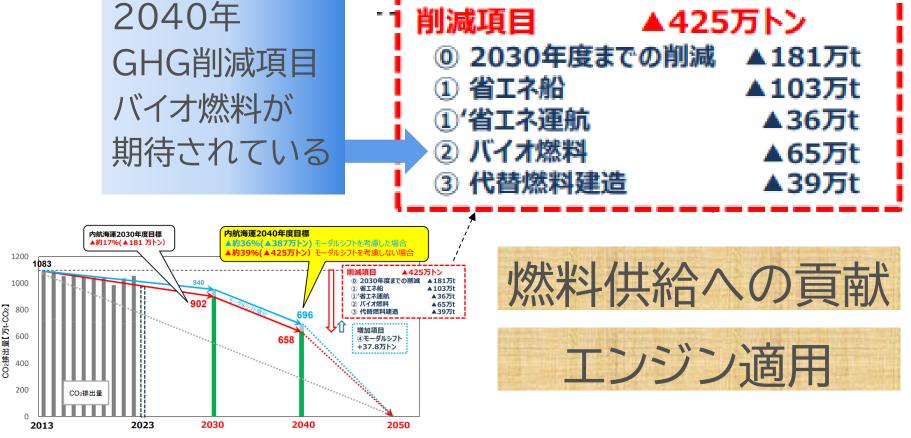
熱効率

<mark>低負荷時(非常時)においても、</mark>3cylで熱効率の良い領 域にて運転可能

3シリンダ運転について

良好な低負荷性能

低負荷においても、3シリンダ用に設計した吸排気系により、 十分な空気が確保されるため、良好な燃焼が行われます

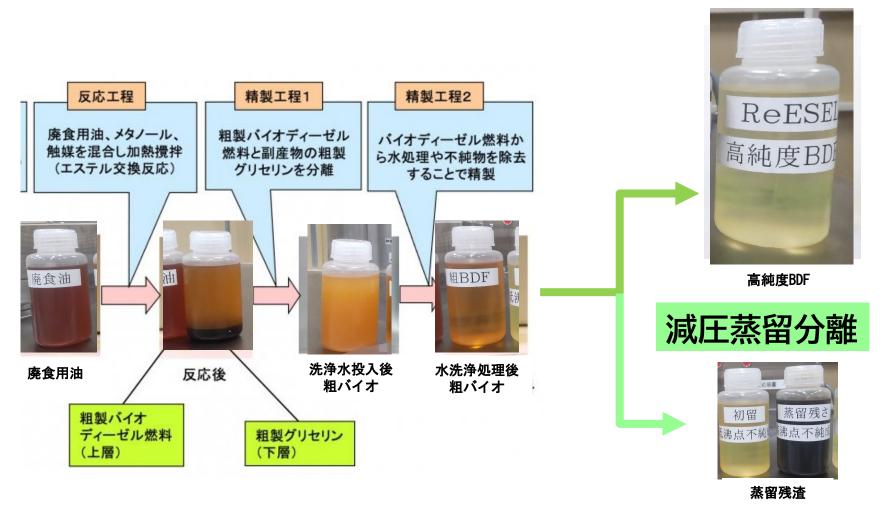

良好な振動特性

ベースの直列6シリンダエンジンは回転成分がバランスする 方式であり、回転に伴う不釣り合いがありません

比較

	導入 コスト	スペース	メンテ コスト	冗長性
セルフ バックアップ エンジン	O	O	O	
2台並列	Δ	Δ	Δ	0
ハイブリッド	Δ	Δ	Δ	0

当社がバイオ燃料製造を手掛けるねらい



出典:国土交通省 海事局 海洋政策課 「内航カーボンニュートラル推進に向けた検討」より抜粋

バイオ燃料の種類と特徴

種類	特徴	
SVO Straight Vegetable Oil	植物油や廃食油を直接利用 安価であるが、品質が安定しない 高級バイオ燃料の原料となる	
FAME Fatty Acid Methyl Ester (脂肪酸メチルエステル)	SVOをエステル化処理して製造される JIS規格で品質が定義されている 不純物が少々残っている可能性あり	
高純度FAME ※当社製造品	FAMEを減圧蒸留して製造される JIS規格を上回る性能 不純物はほとんど無く、安定している	
HVO Hydrotreated Vegetable Oil	SVOと水素との反応で製造される 軽油と同等の性質をもち長期保存可能 非常に高価	

赤阪鐵工所における高純度バイオディーゼル燃料の製造工程

バイオ燃料製造工場

製造工場外観

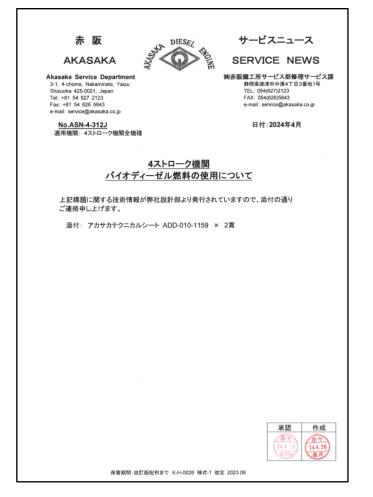
減圧蒸留装置

当社が所有するディーゼル車において、当社製造B100 燃料を継続的に使用中

現在、走行距離は5600キロを超えており、不具合の発生はありません

赤阪製ディーゼルエンジンへのバイオ燃料適合

以下の規格に適合した FAMEまたはHVOの使用を推奨


0

FAME:

- *JIS K 2390(日本規格)
- *EN 14214(欧州規格)
- *ASTM D6751(米国規格)

HVO:

- *EN 15940(欧州規格)
- *ASTM D975(米国規格)

